General Game Playing

Mohit Agarwal, Ujjwal K. Singh
April 17, 2013

Mentor : Amitabha Mukerjee

Abstract

A General Game Playing agent plays game without any previous knowl-
edge of the game and without any human intervention. A formal descrip-
tion of game, GDL(Game Descriptive Language) is provided to the player
before the start of the game. This work implements the recent work
[4] published by developer of CadiaPlayer which involves the major two
changes in the MCTS(Monte Carlo Tree Search).

1 Introduction

General Game Playing Agents are AI Programs that tackles the problem of
playing more than one game efficiently. They are very different from Specialized
Game Players ex. DeepBlue. They do not rely on advanced specific algorithms
designed to play a specific game. In specialized game players, much of the Al
and design work is done by programmer only and there left a much less work for
program to perform, Instead General Game Player analyzes the rules and reg-
ulations of the game and play accordingly as to maximize the score of the player.

General Game Players have no idea of game before the start i.e. they play
those games that are not previously encountered by them. They do not require
any human intervention. Thus General Game players are independent intelligent
agents that accept descriptions of arbitrary games at runtime and perform their
best by using such descriptions.

In General Game Playing, we mainly focus on games having finite state
machines.

2 Motivation

Any real life situation can be carved into a digital game. If a General Game
Player is able to tackle or play that digital game, it will be able to tackle that
real life situation also. They have applications in Droids, UAVs, army defense
and Robots (ex. Roomba Vacuum Cleaning Robot).

Researchers have been taking interest in this field as they provide testbed
for AT of how computational procedures achieve intelligent behaviour. They
add excitement and allow one to compare his/her skills to those of others. More
intelligent agents are highly likely to win, so they can also be used in evaluation
techniques for intelligent systems.

3 GDL (Game Descriptive Language)

General Game Players require a formal description of rules and regulations of
the game at runtime. As we concentrate on games having finite state machines,
it is possible to represent these games in the form of state graphs. GDL encodes
such games in more compact form as compared to direct representation.

It is logic Programming Language whose semantics are purely declarative
which conceptualizes the game in terms of entities, actions, propositions and
players. Entities are represented by object constants for ex. X as X player, cell
(1,1,b) as cell at (1,1) marked with X in Tic-Tac-Toe. Actions are taken by
players ex. Noop for no-operation-performed, mark(m,n) to mark cell (m,n) in
Tic-Tac-Toe. Propositions are logical statements that are either true or false in
a particular state of game. Some words are kept reserved in GDL that can be
used for all games while meaning of other words are game dependent.

GDL can not describe games having element of chance or some sort of ran-
domness. Hence, Improved version of GDL was released known as GDL-II [5]
which can describe non-deterministic games ex. Poker etc.

(ROLE XPLAYER) ; to define player X
(ROLE OPLAYER) ; to define player O

(INIT (CELL 1 1 B)) ;initial state
(INIT (CELL 1 2 B))
(INIT (CELL 1 3 B))
(INIT (CELL 2 1 B))
(INIT (CELL 2 2 B))
(INIT (CELL 2 3 B))
(INIT (CELL 3 1 B))
(INIT (CELL 3 2 B))
(INIT (CELL 3 3 B))

(INIT (CONTROL XPLAYER)) ; X player turn to make move initially

(<= (NEXT (CELL ?M 7N X)) (DOES XPLAYER (MARK ?M 7?N)) (TRUE (CELL 7?M 7N B)))
; if (m,n) is blank and X marks it, next state is (m,n,X)

(<= (NEXT (CELL ?M 7N 0)) (DOES OPLAYER (MARK ?M ?N)) (TRUE (CELL ?M 7N B)))
; if (m,n) is blank and 0 marks it, next state is (m,n,0)

4 GameMaster

Graphics for

Spectators

Game
~E Game Manager |+» State Data
Records

Teplip

. e w Player ..

[logic.stanford.edu]

As the whole world will be busy in designing more and more intelligent
gaming agents, a need of platform arises where they can compete against them
and compare intelligence of their players. GameMaster provides the platform
which communicates with players through TCP/IP Protocol, provides them
GDL, their role in game (ex. X or O in Tic-Tac-Toe), startclock and payclock.
Startclock is the time given to player before the start of game to analyze GDL.
Payclock is the time given to player to think before making move. As play-
ers communicate with GameMaster their move, GameMaster stores Temporary
state data of the game. It also maintains the match and tournament records.

Using Temporary State Data, GameMaster simulates the whole game in
graphics for spectators.

5 Previous Work

Stanford Logic Group Initiatives and introduction of General Game Playing
competition in AAAT Conference from 2005 promoted research in this new
emerging field. Since 2005, tremendous research activity has been noted in
the field. Winners of GGP Competition are:

Year Player Writer University

2005 ClunePlayer Jim Clune UCLA

2006 FluxPlayer Stephan Schiffel, Michael Thielscher =~ Dresden University
2007 CadiaPlayer Yngvi Bjrnsson, Hilmar Finnsson Reykjavik University
2008 CadiaPlayer Yngvi Bjrnsson, Hilmar Finnsson Reykjavik University

2009 Ary Jean Mhat Paris 8 Univeristy
2010 Ary Jean Mhat Paris 8 Univeristy
2011 TurboTurtle Sam Schreiber

2012 CadiaPlayer Hilmar Finnsson, Yngvi Bjrnsson Reykjavik University

Table 1: GGP Competition Winners
[source : wikipedia]

5.1 ClunePlayer

ClunePlayer utilize the concept of constructing heuristic evaluation functions
[2] from GDL. These heuristic evaluation functions represent exact values of the
simplified games. Simplified games are abstract models of the original games
that incorporate payoff, control and termination. Exact values calculated are
approximated for similar types of games. Thus the main drawback with clune-
player is that it performs well only for similar types of game.

5.2 CadiaPlayer

Enhanced MCTS(Monte Carlo Tree Search) in the context of GGP. Two im-
provements in Basic MCTS has been done in which one allows early termination
and second one improves action-selection strategy when both explored and unex-
plored actions are available. In addition, use of extensive game theory enhances
its performance.

6 Algorithm

There are algorithm such as Alpha Beta and MiniMax which are efficient only
when good evaluating function can be computed efficiently. They are good for
games which have not large branching factor, say within 35.

Basic General Game Player [from Marius Schneider, Potsdam

2011].
It uses Monte-Carlo search which is another algorithm used by GGP for opti-
mizing their best move. It select the best move to play by playing the large
number of random games from the current state to the end and calculate the
score for them.

Moves are evaluated according to the average score of the random games
which it has played, not only at the beginning but at every stage of the game,
using the bandit approach. Bandit approach is one in which we are expected
get maximum reward.

It obviously has a problem as average score of a branch sometimes does not
always provide the best move to be played thus spending more time in bad
branches.

6.1 Monte Carlo Tree Search Basic Algorithm

Repeated X times

Selection - Expansion - Simulation —— Backpropagation

'/\ /f“\\..fo

Figure from Chaslol (2006)

1. Obtain an initial game tree in the time provided by the Game Manager
as Start Clock.

2. Repeat the following sequence till timeout occurs or best move has been
evaluated

(a) Selection : From the current node/state as root, pick one path to a
leaf with the best score” using a mini-max formula.

(b) Expansion : From the best leaf, expand it by one level by creating
a new child node which can be reached from parent by selection one
legal move.

(¢) Simulation : Now the game simulated to get the score for the game
by selecting random legal moves till the terminal node is reached. [1]

(d) Back Propogation : Now retrace the path up till the root node and
updating the score associated with the nodes which comes in the
path.

3. Pick the best move of the root as your move when the timeout occurs.
Here it can be seen that:
e Some moves are bad and do not need further exploring.

e Should spend some time to verify whether a move that is current good
will remain good or not.

e Need to have a mechanism for moves that are bad because of extremely
bad luck to have a chance to be reconsidered later.

6.2 UCB: Upper Confidence Bound
For each node N;, compute its UC'B;

Wi N
UCB; = ﬁi—kC Ni(a)

Where,

W; is the reward sum associated with the node.

N; is the total number of times it has been visited..
N is the total number of games played..

N;(a) is the times action a has been taken..

C is a constant called exploration parameter..

Expand a new simulated game for the move with the highest UCB value.
Constant C is used to keep the balance between.

Exploitation: exploring the best move so far.

Exploration: exploring other moves to see if they can be proved to be better.

6.3 Monte Carlo Tree Search Basic Algorithm with UCB

1. Obtain an initial game tree in the time provided by the Game Manager
as Start Clock.

2. Repeat the following sequence till timeout occurs or best move has been
evaluated

(a) Selection : From the current node/state as root, pick one path to a
leaf with the best score May decide to trust the score of a node
if it is visited more than the threshold. May decide to prune
the node if its score is too bad now to save time.

(b) Expansion : From the best leaf, expand it by one level by creating
a new child node which can be reached from parent by selection one
legal move. May decide to expand only the best leaf, or some
potentially good leaves.

(¢) Simulation : Now the game simulated to get the score for the game
by selecting random legal moves till the terminal node is reached.

(d) Back Propogation : Now retrace the path up till the root node and
updating the score associated with the nodes which comes in the
path.

3. Pick the best move of the root as your move when the timeout occurs.

7 Our Work

In early phase of the project we have studied basic lectures on general game play-
ing from We have built our work on Basic General Game Player [from Mar-
ius Schneider, Potsdam 2011] which has implemented the Simple Monte
Carlo using the Bandit approach which selects the best move depending upon
the max score of the nodes.

We have extended and integrated Monte Carlo Tree Search (MCTS) to the
Basic Game Player which is another search algorithm and used Upper Confi-
dence Bound (UCB) to select the move for the player. We have used reference
from [http://mcts.ai/index.html] for MCTS and UCB with exploring urgency
from our main reference [4].

Then main idea for these extension is to explore more new nodes in early
phase of the game playing. As in early phase large part of the game tree remains
unexplored so the gaming should be designed so that it explores in early phase.
In the later phase of game playing priority should be given to the nodes that
has already been explored because it is just the reverse situation from the early
phase as most of the tree has already been explored, thus exploitation should
be given priority over exploration.

8 Results and Conclusion

Note: We have used Start Clock to be 10 sec for every experiment.

Game(Single Random Legal Minimax Basic Player Owr Player
Player)
Buttons Runtime: 32ms |Runtime: 39ms | Runtime: 195ms | Runtime: 32466ms Runtime: 32465ms
Score: Lose Score: Lose Score: Lose Score: Win Score: Win
Maze 10 steps 10 steps 10 steps 7 steps 7 steps
Lose Lose Lose Win Win
Snake 6ms 19ms 265ms 63779ms 106726ms
Score(100):6 |15 15 42 100
Peg 215ms 215ms 51645ms T1529ms 106674ms
20 0 0 48 100
memory small 81ms 72ms 344ms 24640ms 24632ms
25 0 0 75 100
blocks world 3ms 2ms 200ms 20726ms 20723ms
0 0 0 100 100

Figure 1: Score and runtime for various player for single player games Play
Clock is 5 s

100 * ™
Isolated Player
75
L
=
% 50
E
m
()
25 =—f—=Peog
B Buttons
= =5nake
0 ——
1 2 5 10 Maze
PlayClock ins

Figure 2: Score for our Game Player against Play Clock Time for various single
player games

Gamne Vs. Random Vs. Basic Player

Tic-tac-toe Results 11000 results: 100/0
runtime (in ms):103609 23 runtime (in ms): 3637236376

results: 50/50
runtime (in ms): 44243 44242

Checkers results: 10040 results: §0/100
runtime (inms):709219771 runtime (inms): 393917 392234
100/90 337430ms 337234ms
Mini Chess Results: 1000 results: 100/0
runtime (inms):8573123 runtime (inms): 2075520748

results: 100/0
runtime (inms): 2075520751

Connd Results - 100/0 results: 100/0
runtime (inms): 95051 317 runtime (in ms): 9899099002

results: 0 100
runtime (inms): 118648 118692

Figure 3: Score of our player and other Players in dual playing games Play
Clock is 5 s.

Play Clock Time | Tic-tac-toe Checkers Mini chess
1 see 100/0 100/70 100/0
2 see 100/0 100/80 100/0
5 see 50/50 100/90 100/0
10 sec 50/50 100/80 100/0

Figure 4: Competition mode: Our Player vs. (Basic Player using Bandit Ap-
proach)

Introduction of Confidence bound on Monte Carlo Search Tree have signifi-
cantly improve the time game agent takes to get an good estimate on best move
to be played in the current situation. From the above table it can be seen that
if the time provided is less than it plays very efficiently against the player which
uses Bandit approach to select the move. UCB factor improves the time taken
to search for optimized best move

Score is given in the scale of 0 to 100 (0 means lose and 100 means win or it
is score in case of snake and checkers). 100/0 means that our player scored 100
and basic player scored O.

10

Here Start Clock is the time provided to the Gaming Agent to learn the

rules of the game through Game Descriptive Language and Play Clock is the
time between the moves.

References

[1]

Yngvi Bjornsson and Hilmar Finnsson. ”a simulation-based approach to
general game playing,. IEEE Transactions on Computational Intelligence
and Al in Games,, 1, 2009.

James Clune. ”heuristic evaluation functions for general game playing,”.
AAAI Conference,, pages 1134-1139, 2007.

Finnsson and Yngvi Bjornsson. ”game-tree properties and mcts perfor-
mance,. The IJCAI-11 Workshop on General Game Playing,, 2011.

Hilmar Finnsson. Generalized monte-carlo tree search extensions for general
game playing,. The Twenty-Sixth AAAI Conference on Artificial Intelli-
gence,, pages 1550-1556, 2012.

Michael Thielscher. ”a general game description language for incomplete
information games,. AAAI Conference,, 2010.

11

